
CS771A: Project Report

CLASSIFICATION OF OBJECTS FROM THE
VIDEO STREAM

Saurav Shekhar
Department of Computer Science & Engineering

Indian Institute of Technology, Kanpur
sshekh@iitk.ac.in

Ekansh Gupta
Department of Electrical Engineering

Indian Institute of Technology, Kanpur
egupta@iitk.ac.in

Palak Agarwal
Department of Computer Science & Engineering

Indian Institute of Technology, Kanpur
palakag@iitk.ac.in

Abhay Kumar
Department of Electrical Engineering

Indian Institute of Technology, Kanpur
abhayk@iitk.ac.in

Abstract

In this project, we explored various methods of detecting and classifying objects
in a video stream into three classes- Pedestrian, Two-Wheeler and Four-Wheeler.
For each frame, We extract region proposals using selective search or background
subtraction, get features using a variety of techniques and classify them using
various standard classifiers available.

1 Introduction

Classification of objects in a video frame is a well-known problem. Much work has been already
done in this area and people have done this using various techniques of machine learning like image
processing, Convolutional Neural networks, Object tracking etc.. We attempted to use some of these
techniques here to get a analysis of using different methods for classification and feature extraction.

2 Preprocessing

We extracted the bounding boxes from labelled data for each frame and each video and sorted them
according to their corresponding labels. The text files containing all the object details (enum.py
was used to sort columns in order of frame numbers for easier pre-processing) were used for this. In
total we get around 120,000 labelled images using this. Corresponding program is fr.py. Accu-
racy for feature extraction + classification is reported on this dataset. We also created the None class
using background subtraction. Code for this is in None features/none extraction.py.

2.1 Background Extraction

Background Subtraction methods are widely used for detecting and tracking moving objects in
videos. It is useful in many applications such as traffic monitoring, video surveillances. Back-
ground subtraction is highly problematic when the camera is also moving. Basic Background Sub-
traction (BBS) algorithm computes the absolute difference between the current frame and a static
background frame and compares each pixel to a threshold. Background is modeled by a mixture of
Gaussians (MOG). Backgrounds having fast variations are not easily modeled with just a few Gaus-
sians accurately, and it may fail to provide sensitive detection. However, Background subtraction

1



gives reasonable accuracy in the slowly varying background. We have used background subtraction
for the following purposes:

• Object Detection : Pixels associated with the same object should have the same label; one
can accomplish this by performing a connected component analysis. All the connected
components are computed and they are considered as active regions if their area exceeds a
given threshold. This step is usually performed after a morphological filtering to eliminate
isolated pixels and small regions. Detected objects will be used as testing images for the
trained classifiers.

• Defining ’None’ Class: After foreground extraction, different random patches from the
background images are collected and are assigned the ’None’ label. These random patches
will be used to extract features for the ’None’ class. Basically, ’None’ class is nei-
ther ’Pedestrian’ nor ’Two-Wheeler’, nor ’Four-Wheeler’. This has been implemented in
none extraction.py

2.2 Selective Search

Selective Search [UvdSGS13] generates all possible object locations in a given image. It is a data-
driven approach which combines the strength of segmentation and exhaustive search. It exploits the
structure of the image to generate object locations using the bottom-up segmentation and different
sampling techniques. Different grouping criteria and complementary colour spaces are exploited to
capture all scale and diversified light- ing conditions. Selective search uses hierarchical grouping al-
gorithm to for image segmentation. Because the process of grouping itself is hierarchical, it captures
locations at all scales by continuing the grouping process until the whole image becomes a single
region.

We used selective search for

• Extracting candidate proposals from given frame of a given video. Program
sel search.py saves each proposal separately in a given folder

• In their landmark RCNN [GDDM14] paper, Girshick et al used selective search proposals
used to find overlaps (IoU) with training boxes and labelled the poposals if IoU was >
0.5. Else the proposal was used as a None label. We have used this with HoG features to
generate features from each frame. Since slective search gives around 500 region proposals
for each image, we use around 1k frames for generating data. Code is in selHog.py.

Figure 1: Figure illustrating the possible object locations given as output of selective search

2



3 Feature extraction

3.1 SIFT

Scale-invariant feature transform (or SIFT) is an algorithm in computer vision to detect and describe
local features in images. We used SIFT to extract distinguishable and characteristic features (also
known as keypoints) for images. SIFT/sift.pywas used to calculate SIFT features for 60,000 of
the 120,000 images (due to memory constraints). It resulted in the generation of roughly 8,000,000
keypoint descriptors.

A keypoint descriptor is a 128 dimensional vector that denotes the state of a specific area of an
image. Different images have different number of keypoint descriptors. For training a classifier, we
however need input vectors of a fixed dimension. Hence visualizing all the 8,000,000 keypoints as
points on a 128 dimensional plane and then using a Bag-of-Words approach results in the creation
of histograms for each image.

Due to memory constraints, 1,000,000 keypoints uniformly sampled from the 8,000,000 descriptors
were used to cluster them into 1000 groups using k-means clustering. The result is a ”code-book”
that can subsequently assign a keypoint descriptor to any of these 1000 groups, essentially producing
a 1000 dimentional vector for each image. The code file SIFT/cd.py computes the codebook and
the file SIFT/hist.py computes the respective histograms. After these steps we get a 1000
dimensional vector for all 120,000 images that can be used for classification.

3.2 HOG

The histogram of oriented gradients (HOG) is a feature descriptor used for the purpose of object
detection. The technique counts occurrences of gradient orientation in localized portions of an
image.

This was another way of extracting features for images. HoG has the added advantage that it does
result in vectors of a fixed size if all the images are of a fixed size and the HoG parameters are kept
the same. For this reason, all images were scaled to 100×100 pixels and a cell size of 50×50 was
used to compute 250 orientations, resulting in a 1000 dimensional vector for each of the 120,000
images. HOG/hog.py extracts the HoG features of the images.

3.3 CNN

We can extract features from images using convolutional neural networks. Training a CNN from
scratch requires a lot of computational resources. Therefore, we used a model pre trained on
the ILSVRC 2012 dataset and used caffe [JSD+14] for extracting features. CNN folder contains
all the required code. File list for training is in file list.txt. See http://caffe.
berkeleyvision.org/gathered/examples/feature_extraction.html for ex-
planation on feature extraction. We subtract the mean image of ILSVRC dataset from each image
to get better features. extractor.py converts output data (in levelDB format) into numpy arrays
and train cnn.py runs classifiers and calculates accuracy. We use fc7 features, which are the
higest level of features in the network with a batch size of 50.

3.4 RBM

Restricted Boltzmann Machine have been used in our project as it has been proved to be a good
feature extraction method for text and image classification[GHW06]. It is another neural network
technique which is basically a 2 layer network as shown in Figure 2.

We used BernoulliRBM method for dimensionality reduction on our data. We later applied classi-
fiers on this reduced data to get the results. Before applying the classifier, all the images were resized
to a fixed size of 78 x 128. The classifier can be varied on the learning rate, number of components
and number of iterations.

We got the following results when we used python’s sklearn function. The code is in the file
bernoulli rbm.py.

3

http://caffe.berkeleyvision.org/gathered/examples/feature_extraction.html
http://caffe.berkeleyvision.org/gathered/examples/feature_extraction.html


Figure 2: Figure taken from [Sal15]

BernoulliRBM.
Classifier- LinearSVC
Accuracy- 47%

3.5 Autoencoder

In simple cases, Auto-encoder is a 3-layer network where the hidden layer has lesser neurons than
the input and the output layer. The input and the output layer have the same number of neurons.
Auto-encoders are another neural network method used for extracting the features. It is another one
of the non-linear dimensionality reduction methods which uses neural nets.

Figure 3: Figure taken from [dl4]

The code used by us has been taken from [den], which implements Denoising Auto encoders, which
is a stochastic version of the auto encoder. For our data, we had 2 hidden layers of 1000 neurons
each and the algorithm gave an accuracy of 47 %.

4 Results

Here is the accuracy results for different classifiers and feature extraction techniques over the dataset
created in 2.

4



4.1 SVM

Differnt Features Accuracy
HOG 0.78
SIFT 0.77

Selective Search + HOG 0.22
RBM 0.47
CNN 0.92

Table 1: SVM accuracy

4.2 Decision Trees

Differnt Features Accuracy
HOG 0.72
SIFT 0.72

Selective Search + HOG 0.67

Table 2: Decision tree accuracy

4.3 Random Forests

Differnt Features Accuracy
HOG 0.83
SIFT 0.82

Selective Search + HOG 0.78
CNN 0.90

Table 3: Random forest accuracy

4.4 Background subtraction

Figure 4: Classified detected objects

5



5 Future scope

For images, RCNN [GDDM14] solves the problem completely from object detection to classifica-
tion. Developments over it [Gir15] and [RHGS15] have tried to pipeline the process and increase
its speed. We tried running RCNN and its variants on the images but were unsuccessful. We can try
comparing out current methods to RCNN in future.

Also, currently detection and classification happens for each frame independently. We can use
continuous frame data to implement tracking of objects in the video.

6 Acknowledgement

We thank Prof Harish Karnick for giving us the opportunity to work on this project and for providing
guidance whenever required. We also thank Mr Nagendra Yadav and Saurabh for providing help
with the GPU setup.

References

[den] Denoising autoencoders.
[dl4] Deep autoencoders.
[GDDM14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-

chies for accurate object detection and semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.

[GHW06] Peter V Gehler, Alex D Holub, and Max Welling. The rate adapting poisson model for
information retrieval and object recognition. In Proceedings of the 23rd international
conference on Machine learning, pages 337–344. ACM, 2006.

[Gir15] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1440–1448, 2015.

[JSD+14] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[RHGS15] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in Neural
Information Processing Systems, pages 91–99, 2015.

[Sal15] Ruslan Salakhutdinov. Learning deep generative models. In The Annual Review of
Statistics and Its Application, pages 361–387. 2015.

[UvdSGS13] Jasper RR Uijlings, Koen EA van de Sande, Theo Gevers, and Arnold WM Smeulders.
Selective search for object recognition. International journal of computer vision,
104(2):154–171, 2013.

6


	Introduction
	Preprocessing
	Background Extraction
	Selective Search

	Feature extraction
	SIFT
	HOG
	CNN
	RBM
	Autoencoder

	Results
	SVM
	Decision Trees
	Random Forests
	Background subtraction

	Future scope
	Acknowledgement

