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1 Introduction to data depth

Data Depth has emerged as an important tool for non-parametric analysis and inference of mul-
tivariate data [16]. Data depth technique facilitates systematic way of ordering the multivariate
data. This is known as “center-outward ordering” [19] or “outlyingness” [11]. Generally, we analyse
multivariate data on the presumption of following normal or near-normal distribution, but it is not
always true. For analysing univariate data, various statistical moments, like location, scale, skew-
ness, kurtosis etc are used. Straightforward extension of these statistical moments of univariate
case is widely used for determining characteristics of multivariate data [11]. These moments are
difficult to realize conceptually or graphically. In many cases various moments don’t exist, making
this approach inappropriate. Simple graphs or contours based on data depth analysis provide more
intuitive visualisation of distributional properties as compared with statistical moments.

1.1 Desirable properties of Data Depth Functions

For using depth functions as an efficient tool for center outward ordering of points in Rd, it should
ideally satisfy the following properties. Let D(.;.): Rd × F → R1 be mapping of a depth function
of points, whose distribution is given by F .

P1: Affine Invariance
Under affine transformation of coordinate system, the depth of a point x ∈ Rd remains
unchanged [19]. Affine transformation preserves collinearity and ratio of distances. It includes
geometric contraction, expansion, dilation, reflection, rotation, translation etc. and all their
possible combinations. Let the transformation be represented as x 7→ Ax+ b, where A is an
invertible d× d matrix and b is a d-dimensional column vector, then

D(Ax+ b;FAx+b) = D(x;Fx) (1)

P2: Maximality at center
Any depth function should attains its maximum at “Center” of the distribution. Center is
defined as a point of symmetry w.r.t some notion of symmetry like central symmetry, angular
symmetry, halfspace symmetry etc [19].

D(φ;F ) = sup
x∈Rd

D(x;F ) (2)

holds for any distribution F ∈ F having its center at φ.

2



P3: Monotonous w.r.t to the deepest point
As a point x moves away from the center along a ray passing through the center, the value
of depth function should decrease monotonically [19].

D(x;F ) ≤ D(φ+ α(x− φ);F ) holds for α ∈ [0, 1] (3)

P4: Vanishes at Infinity
The depth function should approach zero as euclidean distance of the point from the center
approaches infinity [19].

D(x;F ) = 0 as ||x|| → ∞ (4)

1.2 Some Standard Depth Functions

Some of the most familiar depth function used for multivariate data analysis are as following:-

1.2.1 Halfspace Depth

Halfspace Depth (HD) [8, 13] of a point x ∈ Rd w.r.t distribution having probability measure P on
Rd is defined as the minimum of probability mass of any closed halfspace containing x.

HD(x;P) = inf
H
{P(H) : H is a closed halfspace containing x ∈ Rd} (5)

This is also known as “Tukey Depth” or “location depth” [9]. Halfspace depth of a point x with
respect to an empirically distributed data set in Rd is defined as the minimum fraction of data
points lying on either side of any possible hyperplane, drawn passing through x. Let us visualise
halfspace depth at test point x for two-dimensional data set having four empirically distributed
points [2] For the given distribution F , HD(x;F)=1/4 = 0.25

Figure 1: Illustration for finding Halfspace Depth [?]

1.2.2 Simplicial Depth

Simplicial Depth (SD) or Liu Depth [10] of a point x ∈ Rd relative to a probability measure P on
Rd is defined as the probability that x belongs to a random simplex in Rd.

SD(x;P) = P(x ∈ S[X1,X2,X3, ...,Xd+1]) (6)

(Note:A simplex in d-dimension is a d-dimensional polytope, which is convex-hull of its d+1 ver-
tices.It is generalisation of triangle in 2D or tetrahedron in 3D to higher dimensions [18] )
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For an empirically distributed data set, the simplicial depth is defined as ratio of number of simplices
containing x to total number of possible simplices.

SD(x;X1,X2..,Xn) =
Number of simplices containing x

Total number of simplices
(7)

Figure 2: Illustration for calculating Simplicial Depth [2]; SD = 2

(43)
= 0.5

1.2.3 Mahalanobis Depth

Mahalanobis distance-It is a descriptive statistic which provides the relative distance between
points x, y ∈ Rd w.r.t (with respect to) a d × d positive-definite matrix.(notes:for any non-zero z
column vector ZTMZ is positive for a positiv-definite matrix).The mahalanobis distance of a point
x from a data sample with mean µ and covariance matrix S is defined as [17] :-

Dm(x) =
√

(x− µ)⊤S−1(x− µ) (8)

Let us consider a random sample {X1,X2, . . . ,Xn} from multivariate distribution, where second
moment exists.For the given sample of size n, sample version of Mahalanobis Depth of Xi, (MDi)
is defined as [5, 19] :-

MDi =
1

1 + (Xi − X̄)⊤S−1(Xi − X̄)
︸ ︷︷ ︸

D2
m(Xi)

(9)

where, X̄ = 1
n

∑n
i=1Xi and S = 1

n−1

∑n
i=1(Xi − X̄)(Xi − X̄)⊤

1.2.4 L1 depth

L1 depth (L1) [9, 14] of a point x with respect to a random sample, S = {X1,X2, . . . ,Xn} in Rd is
defined as one minus the average of the unit vectors, directed from x towards all observation in S.

L1(x, S) = 1−

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

1

n

n∑

i=1

ui(x)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

(10)

where, ui(x) =
x−Xi

‖x−X1‖
. Since, ui(x) are unit vectors for x 6= Xi [14],

0 ≤ L1(x, S) ≤ 1 (11)
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For x lying far away from the center, all unit vectors gets summed up i.e. lim||x||→∞ ||ū(x)|| = 1
and hence L1 depth approaches zero [14].

lim
||x||→∞

L1(x, S) = 0 (12)

For points near center, value of L1 depth is higher as unit vector cancel each other.

Figure 3: Illustration for L1 depth[1]

1.2.5 Oja depth

(Note: Please include this in types of depth function as it is already defined in R and we have done
misclassification using it also.)
Oja depth of a point x ∈ Rd w.r.t to a sample S = {X1,X2, . . . ,Xn}, whose distribution is given
by F , is defined as [11]

O(x;F ) =
1

1 + EF [volume(S[x,X1, . . . ,Xd])]
(13)

where, S[x,X1, . . . ,Xd] represents the closed simplex with vertices x and random d points from the
sample S.
For an empirically distributed sample in R2, Oja depth of a test point x is defined as [?]

O(x, F ) =

[

1 +
1
(
n
2

)

∑

0<i<j<n

Area of traingle with vertices x,Xi,Xj

]−1

(14)

2 Classification using Data depth

Suppose there are n points, {X1,X2, . . . Xn}. These observations have been categorised into l ‘Pop-
ulations’ or ‘Class’ namely, P0, P1, . . . , Pl−1 containing n0, n1, . . . , nl−1 points respectively (note:
n1 + n2 + . . . + nl−1 = n). Given a test point or a test cluster, we will classify it to one of the
classes using depth-based classifier. A classifier is a function m : X → Y ( where, x ∈ Rd and Y ∈
{0, 1, . . . , l − 1}) that associates a test point x with its corresponding “class” Y .
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2.1 Maximum-depth classifier

Maximum-depth classifier classifies a test point x into the class, with respect to which it has highest
depth. Let Pj denote jth population. Here, we can use any depth function, like halfspace depth,
simplicial depth, Oja depth, mahalanobis depth, L1 depth etc. to classify the test point. [10, 6].

m̂D(x;P0, P1) = I

[

D(x, P1) > D(x, P0)
]

(15)

Generalisation of Maximum-depth classifier for a test point in L populations Above
defined maximum-depth classifier for two-class problem can be generalised for the multi-class prob-
lem.

m̂D(x;P0, . . . , Pj , . . . , Pl−1) = argmax
j

[

D(X,Pj)
]

(16)

It will identify the class out of l classes with respect to which the test point x has highest depth,
and classify the test point to that class.

2.2 Proposed Maximum-depth based classifier for a test cluster in two popula-

tion

Suppose we have two data clusters namely Population1(P1) and Population0 (P0) and a test cluster
(X = {x1, x2, .., xm}), having m points. Then the test cluster is said to be belonging to (P1) if the
number of points in X, having more depth relative to (P1) than that to (P0) is greater than the
number of points in X, having more depth relative to (P0) than that to (P1) This is formulated
as:-

ĥD(X;P0, P1) = I

[
m∑

i=1

I [D(Xi, P1) > D(Xi, P0)]

︸ ︷︷ ︸

n(X,P1)

>
m∑

i=1

I [D(Xi, P0) > D(Xi, P1)]

︸ ︷︷ ︸

n(X,P0)

]

(17)

where, n(X,Pj) represents number of points of test cluster X having highest depth w.r.t Pj (∀j =
{0, 1}).
ĥD(X;P0, P1) = 1 ⇒ Test cluster belongs to P1

ĥD(X;P0, P1) = 0 ⇒ Test cluster belongs to P0

Proposed generalisation of maximum-depth classifier for a test cluster in L pop-

ulations:

Maximum-depth classifier for a test cluster for two-class problem can be easily generalised for
multi-class problem.

ĥD(X;P1, P2, ...Pj ..., Pl) = argmax
j

[

n(X,Pj)
]

(18)

where, n(X,Pj) denotes number of data points of the test cluster X having highest depth w.r.t Pj

(∀j = {0, 1, . . . , l − 1}). If maximum number of points of test cluster belongs to Pj then the test
cluster is classified to Pj .
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2.3 KNN depth-based Classifier

Depth based neighbourhood: For defining depth based neighbourhood, we exploit maximality
at center(P2) of depth functions or symmetrization with respect to x. Firstly we construct an
x-outward ordering of points. Symmetrization construction involves adding to the original sample
(X1,X2.X3, ..,Xn), their reflections w.r.t. to x i.e.(2x−X1, 2x−X2, 2x−X3, .., 2x−Xn). As a re-

sult of symmetrization, x becomes the deepest point of the final sample.Let R
β(n)
x , where β = k/n

denote the smallest depth based neighbourhood that contains atleast β proportion of total sample
points [12].

k-Nearest Neighbours (kNN) classifier, m̂
β(n)
D (x) classifies a test point x into class ‘1’ iff there

are more points from class ‘1’ than from class ‘0’ in the smallest depth based neighbourhood of x
that contains total k data points [12].

m̂
β(n)
D (x;P0, P1) = I

[
n∑

i=1

I [Yi = 1]W
β(n)
i (x)

︸ ︷︷ ︸

η̂1

>

n∑

i=1

I [Yi = 0]W
β(n)
i (x)

︸ ︷︷ ︸

η̂0

]

(19)

with W
β(n)
i (x) = 1

K
β(n)
x

I

[

Xi ∈ R
β(n)
x

]

where K
β(n)
x =

∑n
j=1 I

[

Xj ∈ R
β(n)
x

]

denotes total number of

points in R
β(n)
x . Yi denotes the class to which the data point Xi belongs to. Here, η̂1 and η̂0

represent fraction of points in R
β(n)
x that belongs to class ‘1’ and class ‘0’ respectively.

(NOTE: If η̂1 > η̂0 then η̂1 >
1
2 (∵ η̂1 + η̂0 = 1, always) )

m̂
β(n)
D (x) =

{

1, if η̂1 > η̂0

0, if η̂1 < η̂0
(20)

m̂
β(n)
D (x) = 1 ⇒ Test point belongs to P1

m̂
β(n)
D (x) = 0 ⇒ Test point belongs to P0

2.4 Proposed KNN depth-based Classifier for a cluster in two class problem

KNN depth-based Classifier can also be used to classify a test cluster (X = {x1, x2, . . . , xj , . . . , xm}),
having m points. Here, we will use KNN depth-based Classifier [Eqn:19] to classify each point of

the test cluster. m̂
β(n)
D (xj) is KNN depth-based Classifier which classifies jth point of the test

cluster. It will be 1 if that point belongs to class ‘1’. Hence,
∑m

j=1 m̂
β(n)
D (xj) signifies total number

of points of the test cluster belonging to class ‘1’. Similarly 1 − m̂
β(n)
D (xj) will be 1 if xj belongs

to class ‘0’ and hence,
∑m

j=1[1 − m̂
β(n)
D (xj)] signifies the total number of points of the test cluster

belonging to class ‘0’. If the total number of points of test cluster belonging class ‘1’ is more than
those belonging to class ‘0’, we will classify the test cluster to class ‘1’ and vice versa.
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m̂
β(n)
D (X;P0, P1) = I

[
m∑

j=1

m̂
β(n)
D

(xj)
︷ ︸︸ ︷

I

( n∑

i=1

I [Yi = 1]W
β(n)
i (x) >

n∑

i=1

I [Yi = 0]W
β(n)
i (x)

)

(21)

>
m∑

i=1

I

( n∑

i=1

I [Yi = 0]W
β(n)
i (x) >

n∑

i=1

I [Yi = 1]W
β(n)
i (x)

)

︸ ︷︷ ︸

1 − m̂
β(n)
D

(xj)

]

2.5 Proposed KNN depth-based Classifier for a test cluster in multi-class prob-

lem

Let us consider a multi-class problem for a given sample (X1,X2, . . . ,Xi, . . . ,Xn) where we have
to classify a test cluster X (= {x1, x2, . . . , xj . . . , xm}) into any one of the l populations, namely
(P0, P1, . . . , Pk, . . . , Pl−1) using KNN depth-based Classifier.

m̂
β(n)
D (X;P0, P1, ...Pk..., Pl−1) = argmax

k

[ m∑

j=1

I

( n∑

i=1

I[Yi = k]W
β(n)
i (x)

)]

(22)

2.6 Properties of proposed classifiers for cluster

1.Affine Invariance: Above Depth-based classifiers are defined as a function of various depth
functions, like Halfspace Depth, Simplicial Depth, Oja depth etc. Since these depth functions are
affine invariant [P1], related classifier would also be affine invariant.
Proof :
Let X 7→ Y and Y = AX + b represent the affine transformation. Let ĥD(x;P1x, P0x) denote
the maximum-depth classifier for original sample and ĥD(y;P1y, P0y) denote the maximum-depth
classifier for the affine-transformed sample.

ĥD(y;P1y, P0y) = I
[
D(y, P1y) > D(y, P0y)

]
(23)

= I [D(x, P1x) > D(x, P0x)] (∵ (D(.;.) is affine invariant)

= ĥD(x;P1x, P0x)

Hence, all maximum-depth classifiers (note: whether for a test point or a test cluster ) are affine
invariant.

2.Robustness Analysis: Most statstical depth functions will give zero depth to any outlier
point x, making it impossible to be classified. Symmetrisation construction w.r.t x, involved in
defining depth-based neighbourhood makes x the center of the resulting data sample. Since kNN
depth-based classifier is based on depth-based neighbourhood, it is robust to outliers [12].

2.7 Pros and cons of depth function

Random vector X in Rd is said to be
(a)Centrally symmetric : about θ if X−θ

d
= θ−X (where

d
= denotes “equal in distribution”)[19].

(b)Angularly Symmetric : about θ if (X − θ)/||X − θ||
d
=(θ −X)/||X − θ|| [19].

(c)Halfspace symmetry : about θ if P (X ∈ H ≥ 1/2) for every closed halfspace containing θ [19].
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Halfspace depth:satisfies all four properties, but its computation time is relatively higher [15]. It
is also robust to outliers [4].
Simplicial depth may fail to satisfy the ‘monotonicity’ property [P3] for centrally symmetric
discrete distributions. It may also fails to satisfy the ‘Maximality’ property [P2] for Halfspace
symmetric discrete distributions [19]. Its computation is also slow.[7]
Mahalanobis depth is not ‘robust’ since it depends on means and covariance, which are non
robust measures. Existence of second moment is must for defining mahalanobis depth. It may fail
to satisfy ‘maximality’ property for angularly symmetric distributions [19].
L1 depth: is computationally much faster and easier. But it is not robust for classification purpose
as L1 depth of a test point far away from the convex hull containing sample points is positive. It
hardly attains zero for any outliers.
Oja depth: It satisfies all four properties. Generally, it is robust. But it may not be robust for
certain sample, having a small breakdown point [3]. (Note: Higher the breakdown point of an
estimator, more robust it is.)
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Depth functions Pros Cons

Halfspace Depth It satisfies all four properties Its computation time is rela-
tively higher

Simplicial Depth It may fail to satisfy the ‘mono-
tonicity’ property [P3] for cen-
trally symmetric discrete distri-
butions. It may also fails to
satisfy the ‘Maximality’ property
[P2] for Halfspace symmetric dis-
crete distributions

Its computation is also slow.

Mahalanobis Depth Its computation is fast as well. It is not ‘robust’ since it
depends on means and co-
variance, which are non ro-
bust measures. Existence of
second moment is must for
defining mahalanobis depth.
It may fail to satisfy ‘maxi-
mality’ property for angularly
symmetric distributions

L1 Depth It is computationally much faster
and easier

It is not robust for classifica-
tion purpose as L1 depth of a
test point far away from the
convex hull containing sample
points is positive. It hardly
attains zero for any outliers.

Oja Depth It satisfies all four properties.
Generally, it is robust.

But it may not be robust for
certain sample, having a small
breakdown point. (Note:
Higher the breakdown point
of an estimator, more robust
it is.The breakdown point of
an estimator is the fraction of
data that must be moved to
infinity before the estimator is
also moved to infinity.)

2.8 Improvements in depth based classifier

Maximum-depth classifier has low computation time as compared to KNN depth based classifier.
On a contrary, KNN depth based classifier is highly robust as compared to maximum-depth based
classifier. For optimising computation time and robustness, we have introduced a weighted depth
based classifier. We will exploit the ‘low computation time’ of maximum-depth classifier and
‘robustness’ of KNN depth based classifier. We will use maximum-depth classifier for points having
higher depth value (say upto top 80%) and KNN depth based classifier for the remaining points
(outliers).

ŴD(X;P0, P1) = ĥD(X;P0, P1)I
[

D(X) ≥ 0.2∗MD
]

+m̂
β(n)
D (X;P0, P1)I

[

D(X) ≥ 0.2∗MD
]

(24)
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Where MD denotes the maximum depth value in a given sample. For points having depth greater
than 20% value of MD, we will use maximum-depth classifier. And for points having depth upto
20% of MD, we will use robust KNN depth based classifier. Here 20% is arbitrarily chosen bench-
mark or threshold depth value. We should reduce this threshold value to optimise computation
time, but compromising robustness. Similarly increasing this threshold value improves robustness,
but reduces computation time. Hence, there is a trade-off between computation time and robustness
depending on threshold value.

3 Problem statement

(Please elaborate the problem statement) Let us consider four source, S1, S2, S3, S4 located at ver-
tices of a rectangle( l1 × l2, assuming l1 > l2 without any loss of generality) and four test nodes,
N1, N2, N3, N4 in an isotropic medium. Given the test vectors V1, V2, V3, V4, we have to classify it
to which node do these vectors belong to.

Let us define a Population matrix, P =







P11 P21 P31 P41

P12 P22 P32 P42

P13 P23 P33 P43

P14 P24 P34 P44







(25)

where, Pkl = Population of observations obtained at node Nk due to source, Sl ∀ k, l = {1, 2, 3, 4}.
Observation at each node will constitute of four vectors, obtained from each source. Suppose the

given vectors, V1 =








v11
v12
...

v1m1








, V2 =








v21
v22
...

v2m2








, V1 =








v31
v32
...

v3m3








, V1 =








v41
v42
...

v4m4







, havem1,m2,m3 and m4

points respectively. We have to classify these vectors to the node it belong to.
(explaining our concept): We will classify each point in these test vectors into different sixteen
populations,Pkl according to maximum-depth classifier. If total number of points belonging to
P11, P12, P13 and P14 is maximum, then we will conclude that the given vectors corresponds to
node N1.Similarly If total number of points belonging to P21, P22, P23 and P24 is maximum, then
we will conclude that the given vectors corresponds to node N2 , and so on.Let xij represent jth

point of ith test vector.

ĥD(V1, V2, V3, V4;P ) = argmax
k

[
4∑

i=1

mi∑

j=1

4∑

l=1

[

I

(

{k, l} = argmax
{a,b}

D(xij , Pab)
)

︸ ︷︷ ︸

=1, if xij has highest depth w.r.t Pkl

]

︸ ︷︷ ︸

Summation over Population related to kth test node
︸ ︷︷ ︸

Summation over mi points of ith vector
︸ ︷︷ ︸

Summation over all four test vectors V1, V2, V3, V4

]

(26)
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