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Abstract—In this paper, a hybrid maximum depth - k Nearest
Neighbour (hybrid MD-kNN) method for real time sensor node
tracking and localization is proposed. The method combines two
individual location hypothesis functions obtained from general-
ized maximum depth and generalized kNN methods. The individ-
ual location hypothesis functions are themselves obtained from
multiple sensors measuring visible light, humidity, temperature,
acoustics, and link quality. The hybrid MD-kNN method therefore
combines the lower computational power of maximum depth and
outlier rejection ability of kNN method to realize a robust real
time tracking method. Additionally, this method does not require
the assumption of an underlying distribution under non-line-of-
sight (NLOS) conditions. Additional novelty of this method is the
utilization of multivariate data obtained from multiple sensors
which has hitherto not been used. The affine invariance property
of the hybrid MD-kNN method is proved and its robustness
is illustrated in the context of node localization. Experimental
results on the Intel Berkeley research data set indicates reasonable
improvements over conventional methods available in literature.

I. Introduction

Recent technological developments in microelectrome-
chanical systems (MEMS) and wireless technology have accel-
erated the current research in ad-hoc sensor networks (AHSN)
[1]. The basic aspects of AHSN are data acquisition, process-
ing and decision making based on the acquired spatio-temporal
information. Localization is a crucial aspect of AHSN, where
routing and subsequent evaluation of path cost for the network
are carried out in many applications like emergency response.
Localization is a method to compute the position of the node
in a 2D/3D space, while tracking is a continuous localization
of the mobile nodes over time [2]. An energy-efficient and
real-time target tracking sensor network is proposed in [3].
In this paper, sensor node localization [4] using data depth is
described. Estimation of node location is based on proximity.
The term proximity refers to the fact that predicted node
location is assigned to the nearest grid point in the network.
Proximity based localization requires lower computational time
and provides higher localization accuracy. Some applications
may not require accurate position of the sensor node, for
instance, predicting the location of fire-fighters in an indoor
building. The multi-sensor data used in this work are visible
light, temperature wave-front, humidity, acoustic signal and
link quality for locating the sensor nodes. Thus, each of the
observation corresponds to a five-dimensional vector, which
represents a multivariate observation. The online multivariate
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observation vector recorded by each of the sensor node is
logged on to the central system. Using this observation vector,
position of each of the sensor node can be predicted over time.

A. Motivation and Contributions

Univariate data is widely analysed using various statistical
moments, like location, scale, skewness, and kurtosis. The
localization algorithm based on inter-nodal distances assuming
univariate data distribution is described in [5], [6]. Distance
estimation using received signal strength is erroneous under
NLOS conditions, which leads to higher localization errors.
The statistical moments of univariate case can be easily ex-
tended to determine the characteristics of multivariate data [7].
However, these moments are difficult to compute for multivari-
ate data. In many cases these moments do not exist, making
this approach inappropriate. Generally, we analyse a multivari-
ate data on the presumption of a normal distribution. But it is
not always true in non-line of sight conditions. Data depth is an
important technique for non-parametric analysis and inference
from multivariate data [8]. It facilitates systematic way of
ordering the multivariate data, this is known as center-outward
ordering [9] or outlyingness [7]. Contours based on data depth
analysis provide more intuitive visualisation of distributional
properties as compared with statistical moments. Utilization
of multi-sensor data [10] like visible light, temperature wave
front, humidity, acoustic signal and link quality makes the
localization algorithm efficient for the real-time applications.
Experimental nodes are generally capable of measuring all
these modalities simultaneously. Hence, it improves the lo-
calization accuracy.

The contributions of the paper are enumerated herein.
Localization of sensor nodes using depth as a measure without
any assumption of the distribution of multivariate data is pro-
posed in this paper. The multi-sensor data collected from five
different types of sensors are considered simultaneously for
localization. The proposed tracking method is developed for
the multiple hypothesis testing framework. Multiple hypothesis
correspond to the multiple grids in the network. In this paper,
a hybrid maximum depth - k Nearest Neighbour (hybrid MD-
kNN) method for real time node tracking is proposed. The
method generalizes the maximum depth [7], [11] and kNN
[12] method to account for a vector of multivariate observa-
tion under multiple hypothesis. Generalized maximum depth
method requires lesser computation time than the generalized
kNN method, whereas generalized kNN method is robust in
the non-line of sight conditions. The proposed method has
higher localization accuracy than the generalized maximum
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depth method. Proposed hybrid MD-kNN method is superior
to the generalized kNN method in terms of time complexity.

The rest of the paper is organized as follows. Section II
presents the notations and known definitions. In Section III,
hybrid MD-kNN method for sensor node tracking is described.
Performance evaluation is illustrated in Section IV. Finally, a
brief conclusion is presented in Section V.

II. Notations and Known Definitions

The definitions and desirable properties of different depth
functions are described first. Subsequently, these depth func-
tions are utilized in describing the hybrid MD-kNN method
for node tracking. The depth functions are judiciously chosen
based on the application-specific requirements like computa-
tion time and robustness of localization.

The localization of sensor nodes are carried out in a q
dimensional coordinate system. Let L distinct grid points in
the network are denoted by {Gl , (α1

l
, α2

l
, . . . , α

q

l
)}L−1

l=0
. At each

of the grid, Gl, nl number of training observations points are
collected during offline phase. Suppose there are N training
observation points, O = {X1, X2, . . . XN }. These observations
are categorised into L grids namely, G0,G1, . . . ,GL−1 contain-
ing n0, n1, . . . , nL−1 points respectively such that

∑L−1
l=0 nl = N.

Given an observation vector, X = {x1, x2, . . . , xm, . . . , xM},
where xm ∈ R5, it is localized to one of the grid point
using hybrid MD-kNN method. This is a function l : X →
Y where, Y ∈ {0, 1, . . . , L − 1} that associates an observation
vector X with its corresponding nearest grid Y. In this paper,
indicator function is denoted by I.

A. Statistical Properties of Depth Functions

A random vector Z in Rd is said to be symmetric [9] with
respect to the following types of symmetricity.

• Centrally symmetric: About θ if Z − θ
d
= θ − Z, where

d
= denotes equal in distribution.

• Angularly symmetric: About θ if
(Z−θ)

||Z−θ||

d
=

(θ−Z)

||Z−θ||
.

• Halfspace symmetric: About θ if P(Z ∈ H ≥ 1/2) for
every closed halfspace containing θ.

Depth functions are used for center outward ordering of points
in Rd. It should have following desirable properties [9]. Let
D(.;.): Rd ×F → R1 be mapping of depth of points in Rd,
whose distribution is given by F .

1) Affine Invariance: Under affine transformation of coor-
dinate system, the depth of a point x ∈ Rd should remain
unchanged as affine transformation preserves collinearity and
ratio of distances. Let the transformation be represented as
x 7→ Ax + b, where A is an invertible d × d matrix and b is a
d-dimensional column vector, then

D(Ax + b; FAx+b) = D(x; Fx) (1)

2) Maximality at Center: Any depth function should attain
its maximum at center of the distribution. The center is
defined as a point of symmetry with respect to some notion of
symmetry.

D(φ; F) = sup
x∈Rd

D(x; F) (2)

It holds for any distribution F ∈ F having its center at φ.

3) Monotonous with respect to the Deepest Point: As a
point x moves away from the center along a ray passing
through the center, the value of depth function should decrease
monotonically.

D(x; F) ≤ D(φ + α(x − φ); F) holds for α ∈ [0, 1] (3)

4) Vanishes at Infinity: The depth function should approach
zero as Euclidean distance of the point from the center
approaches infinity.

D(x; F) = 0 as ||x|| → ∞ (4)

B. Definition of Depth Functions

In this Section, different types of depth function are dis-
cussed.

1) Location Depth [13]–[15]: For an observation, x ∈ Rd

with respect to a distribution having probability measure P on
Rd, location depth is defined as the minimum of probability
mass of any closed halfspace containing x.

L(x; P) = inf
H
{P(H) : H is a closed halfspace, x ∈ H} (5)

The location depth function satisfies all the four desirable
properties.

2) Simplicial Depth [16]: For an observation, x ∈ Rd

relative to a probability measure P on Rd, simplicial depth is
defined as the probability that x belongs to a random simplex
in Rd.

S(x; P) = P(x ∈ S [X1, X2, X3, ..., Xd+1]) (6)

Simplicial depth functions may fail to satisfy the monotonicity
property and maximality property for centrally symmetric and
halfspace symmetric discrete distributions respectively.

3) Mahalanobis Depth [9], [17]: The Mahalanobis dis-
tance of a point x from O with mean µ and covariance matrix
Σ is defined as

Dm(x) =

√

(x − µ)⊤Σ−1(x − µ) (7)

Assuming that second moment of O exists, Mahalanobis depth
of xi is defined as

Mi = [1 + (xi − X̄)⊤Σ−1(xi − X̄)
︸                    ︷︷                    ︸

D2
m(xi)

]−1 (8)

where, X̄ = 1
N

∑N
i=1 Xi and Σ = 1

N−1

∑N
i=1(Xi − X̄)(Xi − X̄)⊤.

Mahalanobis Depth function may fail to satisfy maximality
property for angularly symmetric distributions.

4) L1 Depth [13], [18]: For an observation, x, with respect
to O in Rd, L1 depth is defined as one minus average of the
unit vectors, directed from x towards all observations points.

L1(x,O) = 1 −

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

1

N

N∑

i=1

ui(x)

∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣

(9)

where, ui(x) = x−Xi

‖x−Xi‖
denotes the ith unit vector. For x lying

far away from the center, all unit vectors gets summed up i.e.,
lim||x||→∞ ||ū(x)|| = 1 and hence L1 depth approaches zero.

lim
||x||→∞

L1(x,O) = 0 (10)
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For points near center, value of L1 depth is higher as unit
vectors cancel each other.

0 ≤ L1(x,O) ≤ 1 (11)

L1 depth function violates affine invariance property [18].

5) Oja Depth [7]: For an observation, x ∈ Rd with respect
to O, whose distribution is given by F, Oja depth is defined
as

O(x; F) = [1 + EF[v(S [x, X1, . . . , Xd])]]−1 (12)

where, S [x, X1, . . . , Xd] represents the closed simplex with
vertices x and random d points from the O. Expected volume
with respect to distribution, F, is represented by EF [v]. Oja
depth function may violate affine invariance property.

III. HybridMD-kNN Method for Sensor Node Tracking

In this Section, hybrid MD-kNN method for sensor node
tracking is described. The method combines two individual lo-
cation hypothesis functions (LHFs) obtained from generalized
maximum depth and generalized kNN methods. Subsequently,
statistical properties and the algorithmic description of the
proposed method is also provided.

A. Hybrid MD-kNN Method

The hybrid MD-kNN algorithm comprises of two location
hypothesis functions (LHF). Generalized maximum depth and
generalized kNN method are utilized to describe these LHFs.
Unlike maximum depth and kNN method, generalized methods
take into account a vector of multivariate observation under
multiple hypothesis (multiple grid points) testing framework.
The proposed hybrid MD-kNN method optimizes both com-
putational time and robustness. It may be noted that the gen-
eralized maximum depth method has lower computation time
as compared to the generalized kNN method. On the contrary,
generalized kNN method is highly robust as compared to the
generalized maximum depth method. Therefore, hybrid MD-
kNN method has lower time complexity than the generalized
kNN method, while more robust than the generalized maxi-
mum depth method.

1) Generalized Maximum Depth Method: Generalized
maximum depth method utilized in the LHF is described as
follows. Consider two grids namely grid 0, G0, and grid 1,
G1, and an observation vector, X = {x1, x2, .., xM}, having M
points. Then the observation vector is said to be belonging to
G1 if the number of points in X, having higher depth relative
to G1 than that to G0, is greater than the number of points
in X, having higher depth relative to G0 than that to G1. The
binary hypothesis testing problem for node tracking is given
as

ĥD(X; G0,G1) = I

[

n(X,G1)
︷                               ︸︸                               ︷

M∑

i=1

I [D(xi,G1) > D(xi,G0)]

>

M∑

i=1

I [D(xi,G0) > D(xi,G1)]

︸                               ︷︷                               ︸

n(X,G0)

] (13)

where, n(X,Gl) represents the number of points in observation
vector X having higher depth with respect to Gl ∀ l = {0, 1}.

Generalized maximum depth method for a multivariate obser-
vation vector for binary hypothesis problem can be generalised
for multiple hypothesis framework as following

ĥD(X; G0,G1, . . . ,GL−1) = argmax
l

[

n(X,Gl)
]

(14)

If maximum number of points of online observation vector
belongs to Gl then the observation vector is localized to a
position corresponding to Gl in the network grid.

2) Generalized kNN Method: ‘Maximality at center’ prop-
erty of depth function and symmetrization with respect to
x are exploited to define generalized kNN. Subsequently, an
x-outward ordering of points is constructed. Symmetrization
construction involves adding to the training observation points
O = {X1, X2, . . . , XN}, their reflections with respect to x (i.e.,
2x − X1, 2x − X2, .., 2x− XN). As a result of symmetrization, x
becomes the deepest point of the final training points. Gener-
alized kNN method is used to localize an online observation
vector, X = {x1, x2, . . . , xM}, having M points. Let R

β
x denote

the smallest depth-based neighbourhood [12] that contains
atleast β proportion of total training points, where β = k

N
.

m̂
β

D
(x j) will be 1 if jth point of observation vector belongs

to G1 and lies in R
β
x. Hence,

∑M
j=1 m̂

β

D
(x j) signifies the total

number of points of the observation vector belonging to G1

in R
β
x. Similarly 1 − m̂

β

D
(x j) will be 1 if x j belongs to G0 in

R
β
x and hence,

∑M
j=1[1 − m̂

β

D
(x j)] signifies the total number of

points of the observation vector belonging to G0 in R
β
x. If the

total number of points of observation vector belonging G1 in

R
β
x is more than those belonging to G0 in R

β
x, the observation

vector is localized to G1 and vice versa.

m̂
β

D
(X; G0,G1) =

I

[ M∑

j=1

m̂
β

D
(x j)

︷                                                      ︸︸                                                      ︷

I

( N∑

i=1

I [Yi = 1] W
β

i
(x) >

N∑

i=1

I [Yi = 0] W
β

i
(x)

)

>

M∑

j=1

I

( N∑

i=1

I [Yi = 0] W
β

i
(x) >

N∑

i=1

I [Yi = 1] W
β

i
(x)

)

︸                                                      ︷︷                                                      ︸

1 − m̂
β

D
(x j)

]

(15)

with W
β

i
(x) = 1

K
β
x

I

[

Xi ∈ R
β
x

]

where K
β
x =
∑N

j=1 I

[

X j ∈ R
β
x

]

de-

notes total number of points in R
β
x. Let us consider a multi-grid

scenario for the given training points, {X1, X2, . . . , XN}, where
an observation vector, X = {x1, x2, . . . , xM}, is localized to
any one of the L grids, namely, {G0,G1, . . . ,GL−1} using kNN
method. The generalized kNN method for multiple hypothesis
testing scenario is formulated as

m̂
β

D
(X; G0,G1, ...,GL−1) = argmax

l

[
M∑

j=1

I

(
N∑

i=1

I[Yi = l]W
β

i
(x)
)]

(16)
where W

β

i
(x) is as defined in Equation 15. The lth grid, Gl, is

chosen corresponding to the maximum argument.

3) Hybrid MD-kNN Method using LHFs: The expression
for hybrid MD-kNN tracking method is given as the sum of
two LHFs. In this method, threshold (τ) is a value that affects
localization robustness and time complexity of sensor nodes.
As τ increases, localization robustness and time complexity
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increases and vice-versa. For observation points having depth
greater than τ ∗MD, maximum depth method is incorporated.
And for observation points having depth upto τ ∗ MD, kNN
method is used.

ĤD(X; G0, . . . ,GL−1) =

LHF1
︷                                             ︸︸                                             ︷

ĥD(X; G0, . . . ,GL−1)I
[

D(X) > τ ∗ MD
]

+

m̂
β(n)

D
(X; G0, . . . ,GL−1)I

[

D(X) ≤ τ ∗ MD
]

︸                                                ︷︷                                                ︸

LHF2

(17)
Where MD denotes the maximum depth value obtained from
the observation collected at grid points, Gl ∀ l. The thresh-
old can be reduced to optimize the computation time, at
the expense of robustness. Similarly increasing the threshold
improves robustness, but increases computation time. Hence,
there is a trade-off between computation time and localization
robustness.

B. Statistical Properties of the Hybrid MD-kNN Method

1. Affine Invariance: Aforementioned hybrid MD-kNN
method is defined as a function of various depth functions,
like location depth, simplicial depth, and Mahalanobis depth.
Since these depth functions are affine invariant, hybrid MD-
kNN method would also be affine invariant.
Proof:
Let X 7→ Y and Y = AX+b represent the affine transformation.
ĥD(x; G1x,G0x) denote the maximum depth method for original
observation and ĥD(y; G1y,G0y) denote the maximum depth
method for the affine-transformed observation.

ĥD(y; G1y,G0y) = I
[

D(y,G1y) > D(y,G0y)
]

(18)

= I [D(x,G1x) > D(x,G0x)]

= ĥD(x; G1x,G0x)

The first and third equalities are induced from the definition
of maximum depth method. The second equality follows if
D(.; .) is affine-invariant. Hence, maximum depth method for
the observation vector is affine invariant. It may be noted that
the kNN method is affine-invariant [12]. Therefore, hybrid
MD-kNN method is also affine-invariant.

2. Robustness Analysis: Most statistical depth functions
will assign almost zero depth value to an outlier point x with
respect to any grids, Gl. making it impossible to be localized
using generalized maximum depth method.

lim
||x||→∞

D(x,Gl) = 0 (19)

Symmetrization construction with respect to x, involved in
defining depth-based neighbourhood, makes x the center of
the resulting symmetrized training observations. Now, its depth
value is non-zero and can be easily localized using generalized
kNN depth method. Since kNN depth method is based on
depth-based neighbourhood, it is robust to outliers [12]. There-
fore, hybrid MD-kNN method is robust than the maximum
depth method.

C. Algorithm for Hybrid MD-kNN for Sensor Node Tracking

In this Section, algorithm for hybrid MD-kNN method for
tracking is summarized in Algorithm 1.

Algorithm 1 : Hybrid MD-kNN Method for Node Tracking

1: Input : Grid points, {Gl , (α1
l
, α2

l
, . . . , α

q

l
)}L−1

l=0
. Choose the

threshold τ according to desired localization accuracy and
computation time.

2: Measurement Acquisition : Each element of observation
vector is a multivariate observation containing visible light,
temperature wave-front, humidity, acoustic signal and link
quality as labels.

3: Offline Training : Multivariate observation vectors are
recorded at each grid point. At each of the grid, Gl, nl

training points are collected during offline phase.
4: Iteration : Repeat for all the nodes at each time instant.
5: Online Testing : Record online observation vector, X =
{x1, x2, .., xM}, where xm ∈ R5, at time t corresponding to
a particular sensor node.

6: Node Localization : Localize to one of the nearest grid
point using the hybrid MD-kNN method in Equation 17.

7: Condition check : Are all the nodes localized, if not, go
to Step 4.

8: Termination : Output, the location of all nodes.

IV. Performance Evaluation

In this Section, experimental conditions are described first.
Subsequently, experimental results for sensor node tracking
using Intel Berkeley research lab database [19]. Experimental
results from real field deployment are also reported.

A. Experimental Conditions

The sensor nodes (Mica2Dot) considered for the Intel
Berkeley research lab database are shown in Figure 1. Fifty
four nodes are randomly deployed in 40m × 30m indoor
scenario. TinyOS platform are used for collecting the Intel data
using the TinyDB in-network query processing system [19].
Crossbow motes and MTS310 sensor boards are deployed as
sensor nodes in Figure 2. XM2110 IRIS board and MIB520
USB mote interface are used as a gateway to configure the
network. Also, cross-validation of the performance of the pro-
posed algorithms is carried out using National Instruments (NI)
9792 gateway, WSN node - 3212, 3202. The communication
among sensor nodes are based on IEEE 802.15.4 protocol.

Fig. 1. Figure illustrating the deployments of fifty four sensor nodes in Intel
Berkeley Research lab. Reproduced from [19].

For experimental deployment, shoe-mounted sensor node
is utilized for locating the fire-fighter in an indoor scenario as
shown in Figure 2. Each of the fire-fighter acts as a mobile sen-
sor node. Initially, training is performed coarsely to construct
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TABLE I. Comparison of localization accuracy and probability of resolution for various methods using different depth functions

Localization Accuracy (m) Probability of Resolution (POR)

Depth Functions Maximum Depth Hybrid MD-kNN (τ = 0.2) kNN Maximum Depth Hybrid MD-kNN (τ = 0.2) kNN

Location Depth 1.1598 0.8805 0.5445 0.83 0.87 0.91

Simplicial Depth 0.8475 0.7556 0.5245 0.88 0.89 0.90

Mahalanobis Depth 1.4969 1.3014 0.5794 0.78 0.80 0.89

Oja Depth 2.1092 2.1092 0.5840 0.69 0.69 0.90

L1 Depth 2.7202 1.8094 0.6370 0.63 0.75 0.89

a raw data map of each grid point. Grid point herein refers to
the center of each room of the building. However, more grid
points can be taken into account to achieve higher localization
accuracy, depending upon application specific requirements.

Visible Light
Temperature

Humidity
Acoustic

Link Quality

Sensor Node

Router

IEEE
802.15.4

Central
System

Fire

Fig. 2. Figure illustrating the experimental set-up for firefighter tracking in
indoor scenario.

B. Experimental Results

Performance metrics used for evaluating the performance
of proposed algorithm are localization accuracy, probability of
resolution and time complexity. Localization error for a node is
defined as the Euclidean distance between actual and predicted
node location. Probability of resolution (POR) is defined as the
proportion of sensor nodes allocated to the correct grid points.
The localization is carried out on a PC with i5-3330 processor
@2.6 GHz and 4 GB RAM.

TABLE II. Table illustrating the comparison of computation time and
localization accuracy for various methods

Methods Computation Robustness of

Time Localization

Maximum depth-based Small Average

kNN depth-based Longer Better

Hybrid MD-KNN Average Good

1) Time Complexity Analysis for Hybrid MD-kNN Method:
The optimal algorithm to compute the location depth of a
point, X, in R2 is O(NlogN) [20]. Simplicial depth can be
computed in O(N2) [21]. The optimal algorithm to compute
Oja depth has O(Nlog3N) time complexity [20]. L1 depth
and Mahalanobis depth have O(N) computation complexity.
There is a trade-off between localization accuracy and time
complexity. Localization using simplicial and location depth
functions have highest time complexity as depicted in Figure
3. However, at the same time, method using these depth
functions have lower localization error. The computation time
shown here is in fraction of seconds, which provides real-time
solution of node tracking and related applications. Hence, τ is
judiciously chosen based on application specific requirements.

For a large number of training observation points, the ex-
pected volume of all simplices does not vary much for different

elements of the observation vector. From the definition of Oja
depth, it follows that depth values has narrow range. In hybrid
MD-kNN method, kNN method is incorporated for points,
which have depth value less than τ ∗ MD. For lower value
of τ, none of the points satisfy this criteria . In fact, all the
points are localized using maximum depth method. Therefore,
time complexity for Oja depth is minimal. Note that, it is found
that kNN method becomes effective only after τ = 0.96 for this
scenario, which results in high time complexity at τ = 1, for
Oja depth.
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L
1
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Fig. 3. Figure illustrating the time complexity of hybrid MD-kNN method
for various depth functions. The value of β = k

N
= 0.005.

2) Comparison of Localization Accuracy and Probability
of Resolution: Localization accuracy and POR are shown for
all the methods using different depth functions in Table I.
Maximum depth method has the highest localization inac-
curacy. kNN method performs well, because it accounts for
the outliers. Symmetrization involved in defining depth-based
neighbourhood makes kNN method robust to outliers as shown
in Table I. The localization error and POR for hybrid MD-kNN
is reasonable as shown in Table II. kNN method has highest
computational complexity as it involves symmetrisation and
depth-based neighbourhood in addition to what involved in
maximum depth method shown in Table II.

3) Variation of Localization Error with Threshold: In order
to assess the performance of the hybrid MD-kNN method,
Figure 4 shows the variation of localization error with varying
threshold, τ. As the threshold increases, localization error
reduces. At larger threshold, kNN method dominates over max-
imum depth method. Mahalanobis, Oja and L1 depth functions
are based on absolute distances between points. Though dis-
tance based methods yields easy procedures for calculation of
depth but fails to take cognizance of geometric features, which
are often inherent in multivariate data. However, location and
simplicial depth functions are based on relative positioning
of points, it takes into account the geometric features more
effectively. Hence, localization error computed using location
and simplicial depth functions is minimal as shown in Figure
4. Oja depth remains constant until a particular threshold, τ =
0.96, as is expected.
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Fig. 4. Figure illustrating the variation of localization error (m) with threshold
of hybrid MD-kNN method for various depth functions. The value of β = 0.005

It can be noted when performance of the hybrid MD-kNN
method using various depth functions are compared in terms
of computation time and localization accuracy. It is found
that localization accuracy of proposed method using simplicial
and location depth function is better and the requirement
of computation time is longer and average respectively. On
the contrary, computation time of the proposed method using
Mahalanobis and L1 depth functions is smaller, while their
localization accuracy are good and average respectively.

4) Variation of Probability of Resolution with Threshold
and Time: Figure 5 illustrates the variation of POR for the
hybrid MD-kNN method using different depth functions. As
the threshold and time increases, kNN method becomes more
prominent and thus, increases the POR. Online observation
vector of node improves its location estimate over time. POR
using the simplicial and location depth functions outperforms
other methods.
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Fig. 5. Figure illustrating the variation of probability of resolution with
threshold and time of hybrid MD-kNN method, for β = k

N
= 0.005. The depth

functions used are simplicial, location, Mahalanobis, Oja and L1 from top to
bottom respectively on time axis.

V. Conclusion and FutureWork

In this paper, a hybrid MD-kNN method for real time
sensor node tracking has been proposed. It is found that this
method is inexpensive and more accurate for sensor node lo-
calization over Intel Berkeley research database. Future works
includes developing an efficient tracking algorithm using long-
term temporal information over AHSN. The method based on
such functional data can be constructed using band depth. Few
sources may provide malicious information over a time period
during localization. The algorithm which accurately predicts

the location of node with malicious sources is also currently
being investigated. Additionally, the detection of malicious
nodes can also be explored to provide a robust framework
for the node tracking applications over AHSN.
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