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Introduction

◮ Sensor node localization and tracking

◮ Combines two individual location hypothesis functions (LHF)

◮ Obtained from generalized maximum depth and generalized

kNN methods

◮ Multiple sensors measure visible light, humidity, temperature,

acoustics, and link quality

◮ Lower complexity of maximum depth and outlier rejection

ability of kNN method



Motivation

◮ Univariate data is widely analysed using various statistical

moments, like location, scale, skewness, and kurtosis

◮ Distance estimation using received signal is erroneous under

NLOS conditions

◮ Moments are difficult to compute for multivariate data

◮ Generally, we analyse a multivariate data on the presumption

of a normal distribution



What is data depth?

◮ Data depth is an important technique for non-parametric

analysis and inference from multivariate data

◮ Facilitates systematic way of ordering the multivariate data

(center-outward ordering)

◮ Contours based on data depth analysis provide more intuitive

visualisation of distributional properties as compared with

statistical moments.



Contributions

◮ Localization using depth as a measure without any

assumption of the distribution of multivariate data

◮ Developed for the multiple hypothesis testing framework

◮ We generalize the maximum depth and kNN depth based

method to account for a vector of multivariate observation

under multiple hypothesis

◮ Generalized maximum depth method requires lesser

computation time

◮ Generalized kNN method is robust in the non-line of sight

conditions



Notations and Known Definitions

◮ Let L distinct grid points in the network are denoted by

{Gl , (α1
l
, α2

l
, . . . , α

q

l
)}L−1

l=0
, q dimensional coordinate system..

◮ At each grid, Gl , nl number of training points are collected

during offline phase.

◮ N training observation points, O = {X1,X2, . . . XN}.

◮ Observations are categorised into L grids namely,

G0,G1, . . . ,GL−1 containing n0, n1, . . . , nL−1 points

respectively such that
∑L−1

l=0 nl = N.



◮ Given an observation vector, X = {x1, x2, . . . , xm, . . . , xM},

where xm ∈ R5, it is localized to one of the grid point.

◮ Function l : X → Y where, Y ∈ {0, 1, . . . , L − 1} that

associates an observation vector X with its corresponding

nearest grid Y .

◮ Indicator function is denoted by I



Statistical Properties of Depth Functions

A random vector Z in Rd is said to be symmetric with respect to the

following types of symmetricity.

◮ Centrally symmetric: About θ if Z − θ
d
= θ − Z , where

d
=

denotes equal in distribution.

◮ Angularly symmetric: About θ if
(Z−θ)
||Z−θ||

d
=

(θ−Z)
||Z−θ||

.

◮ Halfspace symmetric: About θ if P(Z ∈ H ≥ 1/2) for every

closed halfspace containing θ.



Depth functions

◮ Used for center outward ordering of points in Rd

◮ Let D(.; .) : Rd ×F → R1 be mapping of depth of points in

Rd , whose distribution is given by F .

◮ Properties: (a) Affine Invariance:

D(Ax + b;FAx+b) = D(x;Fx) (1)

◮ Maximality at Center:

D(φ;F) = sup
x∈Rd

D(x;F) (2)

◮ Monotonous with respect to the Deepest Point:

D(x;F) ≤ D(φ+ α(x − φ);F) holds for α ∈ [0, 1] (3)

◮ Vanishes at Infinity:

D(x;F) = 0 as ||x || → ∞ (4)



Location Depth

◮ For an observation, x ∈ Rd with respect to a distribution

having probability measure P on Rd , location depth is defined

as the minimum of probability mass of any closed halfspace

containing x.

◮

L(x;P) = inf
H
{P(H) : H is a closed halfspace, x ∈ H} (5)

◮ It satisfies all the four desirable properties. Location depth of

a point x with respect to an empirically distributed data set in

Rd is defined as the minimum fraction of data points lying on

either side of any possible hyperplane passing through x.



Simplicial Depth

◮ For an observation, x ∈ Rd relative to a probability measure P

on Rd , it is defined as the probability that x belongs to a

random simplex in Rd .

S(x;P) = P(x ∈ S[X1,X2,X3, ...,Xd+1]) (6)

◮ Fail to satisfy the monotonicity property and maximality

property for centrally symmetric and halfspace symmetric

discrete distributions respectively.

◮ For an empirically distributed data set, it is the ratio of number

of simplices containing x to the total number of possible

simplices.



Mahalanobis Depth

◮ The Mahalanobis distance of a point x from O with mean µ

and covariance matrix Σ is defined as

Dm(x) =
√

(x − µ)⊤Σ−1(x − µ) (7)

◮ Assuming that second moment of O exists, Mahalanobis

depth of xi is defined as

Mi = [1 + (xi − X̄)⊤Σ−1(xi − X̄)
︸                      ︷︷                      ︸

D2
m(xi)

]−1 (8)

where, X̄ = 1
N

∑N
i=1 Xi and Σ = 1

N−1

∑N
i=1(Xi − X̄)(Xi − X̄)⊤.

◮ Mahalanobis Depth function may fail to satisfy maximality

property for angularly symmetric distributions.



L1 Depth

◮ For an observation, x, with respect to O in Rd , L1 depth is

defined as one minus average of the unit vectors, directed

from x towards all observations points.

L1(x ,O) = 1 −
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ui(x)
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∣
∣

∣
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(9)

where, ui(x) =
x−Xi

‖x−Xi‖
denotes the ith unit vector.

0 ≤ L1(x ,O) ≤ 1 (10)

◮ It violates affine invariance property.



Oja Depth

◮ For an observation, x ∈ Rd with respect to O, whose

distribution is given by F , it is defined as

O(x;F) = [1 + EF [v(S[x ,X1, . . . ,Xd ])]]
−1 (11)

where, S[x,X1, . . . ,Xd ] represents the closed simplex with

vertices x and random d points from the O. Expected volume

with respect to distribution, F , is represented by EF [v].

◮ For an empirically distributed sample in R2, Oja depth of a

sensor node position x is defined as [?]

O(x ,F) =



1+
1
(
n
2

)

∑

{i,j}∈{1,2,...,n}

Area of traingle with vertices x ,Xi ,Xj





−1

(12)

◮ Oja depth function may violate affine invariance property.



Generalized Maximum Depth Method

◮ Binary hypothesis problem,

ĥD(X ;G0,G1) = I





n(X ,G1)
︷                               ︸︸                               ︷

M∑

i=1

I [D(xi ,G1) > D(xi ,G0)]

>

M∑

i=1

I [D(xi ,G0) > D(xi ,G1)]

︸                               ︷︷                               ︸

n(X ,G0)





(13)

where, n(X ,Gl) = number of points in observation vector X

having higher depth with respect to Gl ∀ l = {0, 1}

◮ For a multivariate observation vector and multiple hypothesis

ĥD(X ;G0,G1, . . . ,GL−1) = argmax
l

[

n(X ,Gl)
]

(14)



Generalized kNN depth based Method
◮ Binary hypothesis problem,

m̂
β

D
(X ;G0,G1) =

I





M∑

j=1

m̂
β

D
(xj)

︷                                                         ︸︸                                                         ︷

I

( N∑

i=1

I [Yi = 1]Wβ

i
(x) >

N∑

i=1

I [Yi = 0]W
β

i
(x)

)

>

M∑

j=1

I

( N∑

i=1

I [Yi = 0]W
β

i
(x) >

N∑

i=1

I [Yi = 1]W
β

i
(x)

)

︸                                                         ︷︷                                                         ︸

1 − m̂
β

D
(xj)





(15)

with W
β

i
(x) = 1

K
β
x

I

[

Xi ∈ R
β
x

]

where K
β
x =

∑N
j=1 I

[

Xj ∈ R
β
x

]

denotes total number of points in R
β
x .

◮ For multiple hypothesis,

m̂
β

D
(X ;G0,G1, ...,GL−1) = argmax

l

[ M∑

j=1

I

( N∑

i=1

I[Yi = l]Wβ

i
(x)

)]

(16)



Hybrid MD-kNN Method using LHFs

◮

ĤD(X ;G0, . . . ,GL−1) =

LHF1
︷                                               ︸︸                                               ︷

ĥD(X ;G0, . . . ,GL−1)I
[

D(X) > τ ∗MD

]

+

m̂
β(n)
D

(X ;G0, . . . ,GL−1)I
[

D(X) ≤ τ ∗MD

]

︸                                                  ︷︷                                                  ︸

LHF2

(17)

Where MD denotes the maximum depth value obtained from

the observation collected at grid points, Gl ∀ l.



Statistical Properties of the Hybrid MD-kNN Method

◮ Affine Invariance: Proof: Let X 7→ Y and Y = AX + b

represent the affine transformation. ĥD(x;G1x ,G0x) denote

the maximum depth method for original observation and

ĥD(y;G1y ,G0y) denote the maximum depth method for the

affine-transformed observation.

ĥD(y;G1y ,G0y) = I
[

D(y ,G1y) > D(y ,G0y)
]

(18)

= I [D(x ,G1x) > D(x ,G0x)]

= ĥD(x;G1x ,G0x)

◮ Robustness:



Algorithm for Hybrid MD-kNN for Sensor Localization

1: Input : Grid points, {Gl , (α1
l
, α2

l
, . . . , α

q

l
)}L−1

l=0
and τ

2: Measurement Acquisition : Each element of observation

vector is a multivariate observation containing visible light,

temperature, humidity, acoustic signal and link quality as

labels.

3: Offline Training : Multivariate observation vectors are

recorded at each grid point. At each of the grid, Gl , nl training

points are collected during offline phase.

4: Iteration : Repeat for all the nodes at each time instant.

5: Online Testing : Record online observation vector,

X = {x1, x2, .., xM}, where xm ∈ R5, at time t corresponding to a

particular sensor node.

6: Node Localization : Localize to one of the nearest grid point

using the hybrid MD-kNN method in Equation 17.

7: Termination : Output, the location of all nodes.



Experimental Conditions

Figure 1: Figure illustrating the deployments of fifty four sensor nodes in

Intel Berkeley Research lab. Reproduced from [?].



Experimental Set-up
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Figure 2: Figure illustrating the experimental set-up for firefighter

tracking in indoor scenario.



Comparison of Localization Accuracy and Probability of

Resolution

Table 1: Comparison of localization accuracy and probability of

resolution for various methods using different depth functions, τ = 0.2

Localization Accuracy (m) Probability of Resolution

Depth Functions MD MD-kNN kNN MD MD-kNN kNN

Location Depth 1.1598 0.8805 0.5445 0.83 0.87 0.91

Simplicial Depth 0.8475 0.7556 0.5245 0.88 0.89 0.90

Mahalanobis Depth 1.4969 1.3014 0.5794 0.78 0.80 0.89

Oja Depth 2.1092 2.1092 0.5840 0.69 0.69 0.90

L1 Depth 2.7202 1.8094 0.6370 0.63 0.75 0.89



Time Complexity Analysis for Hybrid MD-kNN Method

0 0.2 0.4 0.6 0.8 1
0

0.7

1.4

2.1

2.8

3.5

Threshold (τ)

Ti
m

e 
C

om
pl

ex
ity

 (S
ec

on
d)

 

 

Location Depth
Simplicical Depth
Mahalanobis Depth
Oja Depth
L

1
 Depth

Figure 3: Figure illustrating the time complexity of hybrid MD-kNN

method for various depth functions. The value of β = k
N

= 0.005.



Variation of Localization Error with Threshold
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Figure 4: Figure illustrating the variation of localization error (m) with

threshold of hybrid MD-kNN method for various depth functions. The

value of β = 0.005



Variation of Probability of Resolution with Threshold and

Time
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Figure 5: Figure illustrating the variation of probability of resolution with

threshold and time of hybrid MD-kNN method, for β = k
N

= 0.005. The

depth functions used are simplicial, location, Mahalanobis, Oja and L1

from top to bottom respectively on time axis.



Conclusion

◮ Hybrid MD-kNN method for real time sensor node tracking

◮ Inexpensive and more accurate for sensor node localization

◮ Future work includes the utilization of functional data with

band depth techniques

◮ Accurately predicts the location of node with malicious

sources is also currently being investigated
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