Focal Loss based Residual Convolutional Neural Network for Speech Emotion Recognition

Suraj Tripathi, Abhay Kumar, Abhiram Ramesh, Chirag Singh, Promod Yenigalla

Paper# 308

Presented by Abhay Kumar

Introduction

Title & Authors Introduction Proposed Approach Results Poster Screenshot

- This paper proposes a Residual Convolutional Neural Network (ResNet) based on speech features and trained under Focal Loss to recognize emotion in speech.
- Speech features such as Spectrogram and Mel-frequency Cepstral Coefficients (MFCCs) have been used to characterize emotion better than just plain text.
- Focal Loss has the ability to focus the training process more towards hard-examples and down-weight the loss assigned to well-classified examples, thus preventing the model from being overwhelmed by easily classifiable examples.

$$FL(p_t) = -(1-p_t)^{\gamma} \log(p_t)$$

Proposed Approach

Title & Authors Introduction **Proposed Approach** Results Poster Screenshot

Fig. 1 Proposed model architecture

Our best model achieved a 3.4% improvement in overall accuracy and a 2.8% improvement in class accuracy when compared to existing state-of-the-art methods on IEMOCAP dataset.

Results

Title & Authors Introduction Proposed Approach **Results** Poster Screenshot

Table 1. Comparison of accuracies

Methods	Input	Overall Accuracy	Class Accuracy
Lee et al. [1]	Spectrogram	62.8	63.9
Satt et al. [2]	Spectrogram	68.8	59.4
Yenigalla [3]	Spectrogram	71.2	61.9
Proposed Model	Spectrogram	74.2	64.3
Proposed Model	MFCC	74.6	66.7

Table 2. Ablation study of the effectiveness of Focal Loss

Input Features	Loss functions settings	Overall Accuracy	Class Accuracy
Spectrogram	Softmax Loss	70.2	55.8
Spectrogram	Focal Loss	74.2	64.3
MFCC	Softmax Loss	70.7	56.9
MFCC	Focal Loss	74.6	66.7

- 1. Lee, J., Tashev, I.: High-level feature representation using recurrent neural network for speech emotion recognition. In: INTERSPEECH (2015).
- 2. Satt, A., Rozenberg, S., Hoory, R.: Efficient Emotion Recognition from Speech Using Deep Learning on Spectrograms. In: INTERSPEECH, Stockholm (2017).
- 3. Yenigalla, P., Kumar, A., Tripathi, S., Kar, S., Vepa, J.: Speech Emotion Recognition using Spectrogram & Phoneme Embedding, In: Interspeech, 2018.

Poster Screenshot

Title & Authors Introduction Proposed Approach Results

Poster Screenshot

