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Introduction

Introduction

» This paper proposes a Residual Convolutional Neural Network
(ResNet) based on speech features and trained under Focal Loss
to recognize emotion in speech.

» Speech features such as Spectrogram and Mel-frequency
Cepstral Coefficients (MFCCs) have been used to characterize
emotion better than just plain text.

» Focal Loss has the ability to focus the training process more
towards hard-examples and down-weight the loss assigned to
well-classified examples, thus preventing the model from being
overwhelmed by easily classifiable examples.

FL(p;) = —(1 — p.)" log(p;)
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Proposed Approach
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Fig. 1 Proposed model architecture

» Our best model achieved a 3.4% improvement in overall accuracy
and a 2.8% improvement in class accuracy when compared to
existing state-of-the-art methods on IEMOCAP dataset.
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Table 1. Comparison of accuracies

Overall Class
Accuracy | Accuracy

Lee et al. [1] Spectrogram 62.8 63.9

Satt et al. [2] Spectrogram 68.8 59.4

Yenigalla [3] Spectrogram 71.2 61.9
Proposed Model Spectrogram 74.2 64.3
Proposed Model MFCC 74.6 66.7

Table 2. Ablation study of the effectiveness of Focal Loss

Input Loss functions Overall Class
Features settings Accuracy Accuracy
Spectrogram Softmax Loss 70.2 55.8

Focal Loss 74.2 64.3
MFCC Softmax Loss 70.7 56.9
MFCC Focal Loss 74.6 66.7
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