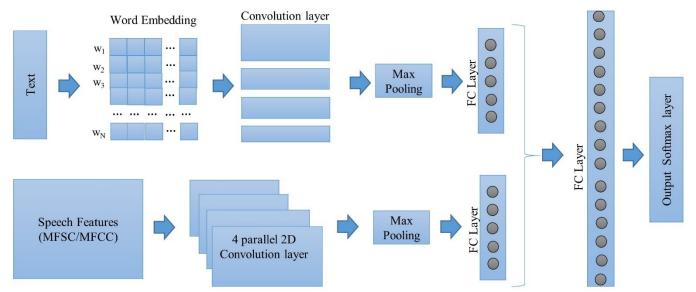
Deep Learning based Emotion Recognition System Using Speech Features and Transcriptions

Suraj Tripathi, Abhay Kumar, Abhiram Ramesh, Chirag Singh, Promod Yenigalla

Paper# 307

Presented by Abhay Kumar

Deep Learning based Emotion Recognition System Using Speech Features and Transcriptions


Introduction

Title & Authors Introduction Proposed Approach Results Poster Screenshot

- This paper proposes a speech emotion recognition method based on speech features and speech transcriptions (text).
- Speech features such as Spectrogram and Mel-frequency Cepstral Coefficients (MFCC) help retain emotion related lowlevel characteristics in speech whereas text helps capture semantic meaning, both of which help in different aspects of emotion detection.
- The combined MFCC-Text Convolutional Neural Network (CNN) model proved to be the most accurate in recognizing emotions in IEMOCAP data.

Proposed Approach

Title & Authors Introduction **Proposed Approach** Results Poster Screenshot

- Fig. 1. Representative CNN architecture for Speech Emotion Recognition using Speech Features and Transcriptions
- Achieved almost 7% increase in overall accuracy as well as an improvement of 5.6% in average class accuracy when compared to existing state-of-the-art methods.

Results

Title & Authors Introduction Proposed Approach **Results** Poster Screenshot

Methods	Input	Overall	Class
		Accuracy	Accuracy
Lee [1]	Spectrogram	62.8	63.9
Satt [2]	Spectrogram	68.8	59.4
Model 1	Text	64.4	47.9
Model 2A	Spectrogram	71.2	61.9
Model 2B	Spectrogram	71.3	61.6
Model 3	MFCC	71.6	59.9
Model 4A	Spectrogram & MFCC	73.6	62.9
Model 4B	Text & Spectrogram	75.1	69.5
Model 4C	Text & MFCC	76.1	69.5

- 1. Lee, J., Tashev, I.: High-level feature representation using recurrent neural network for speech emotion recognition. In: INTERSPEECH (2015).
- 2. Satt, A., Rozenberg, S., Hoory, R.: Efficient Emotion Recognition from Speech Using Deep Learning on Spectrograms. In: INTERSPEECH, Stockholm (2017).

Poster Screenshot

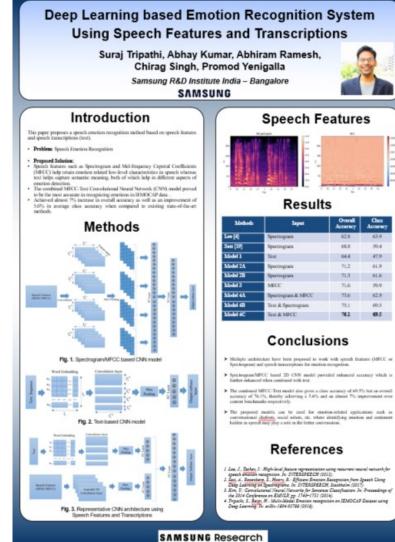
Title & Authors Introduction **Proposed Approach Results**

Poster Screenshot

59.4

47.9

61.9


61.6

59.9

62.9

69.5

69.5

